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ABSTRACT

It is an open question whether an integrated measure of buoyancy can yield a strong relation to pre-

cipitation across tropical land and ocean, across the seasonal and diurnal cycles, and for varying degrees of

convective organization. Building on previous work, entraining plume buoyancy calculations reveal that

differences in convective onset as a function of column water vapor (CWV) over land and ocean, as well as

seasonally and diurnally over land, are largely due to variability in the contribution of lower-tropospheric

humidity to the total column moisture. Over land, the relationship between deep convection and lower-free-

tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer

moisture is robust for the daytime only.Using S-band radar, these transition statistics are examined separately

for mesoscale and smaller-scale convection. The probability of observing mesoscale convective systems

sharply increases as a function of lower-free-tropospheric humidity. The consistency of this with buoyancy-

based parameterization is examined for several mixing formulations. Mixing corresponding to deep inflow of

environmental air into a plume that growswith height, which incorporates nearly equal weighting of boundary

layer and free-tropospheric air, yields buoyancies consistent with the observed onset of deep convection

across the seasonal and diurnal cycles in theAmazon. Furthermore, it provides relationships that are as strong

or stronger for mesoscale-organized convection as for smaller-scale convection.

1. Introduction

Convection is a key process in the hydrologic and en-

ergy cycles through the vertical transport of heat, mois-

ture, and momentum, and thus largely affects the global

energy balance. Representing convection at the right

time and place is crucial to the realistic simulation of

atmospheric variability. However, the representation of

convection remains a large source of uncertainty, bias,

and error in current-generation numerical weather

prediction and climate models (Knight et al. 2007;

Sanderson et al. 2008). Errors in simulated precipitation

fields often indicate deficiencies in the representation of

these physical processes in models. Improving the re-

presentation of deep convection thus depends on knowl-

edge of leading-order controls and further requires the

development of robust observational constraints from

statistical relations that describe these controls.

The uncertainty linked to deep convection lies pri-

marily within a model’s representation of complicated

interactions across scales and the onset of deep convec-

tion. Since most of the present-day general circulation

models (GCMs) cannot explicitly resolve the small-scale

physics of convection, the ensemble effect of convection

is represented through parameterization. Differences

among the different convective parameterizations lie

substantially in the identification of the source layer of

convection and how convective instability is defined and

released (Suhas and Zhang 2014). Observational con-

straints on these processes would provide much-needed

insight into the physical basis of these parameterizations.

Numerical experiments of the diurnal cycle of pre-

cipitation reveal that the parameterization is the main

source of error (Betts and Jakob 2002; Bechtold et al.

2004; Guichard et al. 2004; Knievel et al. 2004; Xie et al.

2004; Lee et al. 2007), and sensitivity experiments show
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that certain parameterizations work better for some

geographic regions or environments than others, indi-

cating the limitations of parameterizations in consider-

ing a range of dynamical and thermodynamic constraints

(Liang et al. 2004).Additionally, existingparameterizations

do not represent the effects of mesoscale convective

systems (MCSs), despite their large contributions to

total rainfall in the tropics (Nesbitt et al. 2006). How-

ever, recent efforts have focused attention on charac-

terizing aspects of mesoscale organization in convective

parameterizations (Mapes and Neale 2011; Moncrieff

et al. 2017), since computer resources will continue to

limit our ability to explicitly resolve convection for global

climate assessments for many years to come.

Factors controlling deep convection in the tropics in-

clude sensitivity to free-tropospheric moisture and en-

trainment profiles (Brown and Zhang 1997; Holloway

and Neelin 2009; Schiro et al. 2016; Zhuang et al. 2018),

the diurnal cycle (Betts and Jakob 2002; Chaboureau

et al. 2004; Del Genio and Wu 2010; Zhang and Klein

2010), large-scale dynamics forcing vertical ascent

(Kumar et al. 2013; Hohenegger and Stevens 2013),

vertical wind shear (Rotunno et al. 1988), microphysical

processes and aerosols (Andreae et al. 2004; Rosenfeld

et al. 2008; Grabowski and Morrison 2017), and cold

pools (Tompkins 2001; Khairoutdinov and Randall

2006; Böing et al. 2012; Schlemmer and Hohenegger

2014; Kurowski et al. 2018). Examining the transition to

deep convection within a unified scheme (D’Andrea

et al. 2014) and in varying spatiotemporal domains

(Holloway and Neelin 2010; Adams et al. 2013) is also

critical to our understanding. Ideally, a parameteriza-

tion would yield realistic statistics for such processes

across regions, seasons, times of day, and for varying

levels of convective organization. Despite complexities,

it is of interest to examine whether a bulk measure of

buoyancy computed from a simple mixing parameteri-

zation can yield a consistent relation with observed deep

convection over a range of conditions, including larger

MCSs.

Several factors contribute to deep convective onset

and associated uncertainty inGCMs, yet one of themost

significant is thought to be the sensitivity to lower-free-

tropospheric humidity and the entrainment profile (e.g.,

Hannah and Maloney 2011; Del Genio 2012; Oueslati

and Bellon 2013; Kim et al. 2014). Sensitivity studies

with climate models have demonstrated that the mixing

processes in cumulus convection are among the most

sensitive of parameters (Murphy et al. 2004; Klocke

et al. 2011; Bernstein and Neelin 2016). Sahany et al.

(2012) showed that differing the entrainment profiles in

CAM3.5 had a substantial impact on the convective

onset as defined by the entraining convective available

potential energy (CAPE). Additionally, Kuo et al.

(2017) found that without entrainment, the sharp in-

crease in precipitation with column moisture observed

over land (Schiro et al. 2016; Ahmed and Schumacher

2017) and ocean (Bretherton et al. 2004; Sobel et al.

2004; Peters and Neelin 2006; Holloway and Neelin

2009; Neelin et al. 2009; Del Genio et al. 2012; Ahmed

and Schumacher 2015) and explored in theoretical and

modeling studies (Raymond 2000; Sobel and Bellon

2009; Muller et al. 2009; Stechmann and Neelin 2011;

Stechmann and Neelin 2014) disappears. Though the

relation between convection and moisture is defined

by a two-way interaction, Kuo et al. (2017) and others

(e.g., Derbyshire et al. 2004; Hohenegger and Stevens

2013) have illustrated that moisture is an important

precursor to convective onset via the effects of en-

trainment (Holloway and Neelin 2009; Schiro et al.

2016). However, detailed representation of cumulus

mixing remains highly uncertain due partly to the lack of

observational constraints, though mean-state biases in

thermodynamic quantities critical to deep convective

onset (e.g., Lintner et al. 2017; Gonzalez and Jiang 2017)

may hinder success in representing deep convective

processes even with improved physics.

By modifying the bulk entrainment profile, the rela-

tive roles of boundary layer humidity and free-

tropospheric humidity can significantly change, which

motivates our discussion here about the appropriate

weighting of free-tropospheric and boundary layer air

and the interaction between convection and the mois-

ture field. Though there are many existing entrainment

parameterizations with dependencies on cloud radius

(Simpson and Wiggert 1969), height (Siebesma et al.

2003), boundary layer height (Soares et al. 2004; Siebesma

et al. 2007), stochasticity (Raymond and Blyth 1986;

Romps and Kuang 2010; Suselj et al. 2014), and vertical

velocity (Neggers et al. 2002), here we investigate a ‘‘deep

inflow’’ mixing assumption in which environmental air is

incorporated in roughly equal proportions through a deep

lower-tropospheric layer (Holloway and Neelin 2009).

Deep-inflow mixing is representative of a deep layer

of environmental air mixing with a bulk deep convective

updraft, likely via both small-scale turbulence and or-

ganized inflow [see Fig. 2 of Schiro et al. (2018) and

discussion therein]. Holloway and Neelin (2009) and

Schiro et al. (2016) explored the consistency of deep-

inflow mixing assumptions to the observed onset of pre-

cipitation as a function of column water vapor (CWV)

over a tropical ocean and tropical land site, respectively.

Zhuang et al. (2018) extends this analysis to additional

tropical and subtropical regions, concluding that the tropi-

cal ocean and Amazon sites are most sensitive to entrain-

ment and the thermodynamics of the lower troposphere.

966 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

Unauthenticated | Downloaded 01/03/23 08:14 PM UTC



Missing from these studies, however, is a comprehensive

assessment of the validity of deep-inflow mixing assump-

tions across a wide variety of environmental conditions and

convection types.

Schiro et al. (2018) finds observational evidence of

deep inflow into deep convective updrafts by relating

empirical estimates of mass flux derived from radar

wind profiler–derived vertical velocity to mixing assump-

tions. Such assumptions, when used to estimate buoy-

ancy available to deep convection, yield a sharp increase

in the probability of deep convection and precipitation

rate as a function of buoyancy, deeming deep-inflow

mixing an effective predictor of the onset of deep con-

vection in the tropics. Ahmed and Neelin (2018) arrive

at a similar answer using a different approach: to reverse

engineer the influence of the environment, as contrib-

uted by various bulk layers (boundary layer, lower free

troposphere, midtroposphere), analytically from the

observed precipitation–water vapor relation shown in

previous studies. Additionally, this strong buoyancy–

precipitation relationship exists for both smaller-scale

and larger, mesoscale convection (Schiro et al. 2018).

Schiro et al. (2018) highlights how its formulation is in-

dependent of problematic (and highly tunable) mixing

coefficients in current convective parameterizations. Both

studies highlight the ability of a deep-inflow assumption

to predict deep convective onset across both land and

ocean regions in the tropics using TRMM 3B42 pre-

cipitation and ERA-Interim moisture and temperature.

Here, we extend the analysis of Schiro et al. (2016,

2018) to provide a detailed examination of variability in

moisture vertical structure (regionally, diurnally, and

seasonally; section 3), its relation to convective onset

and convective organization (section 4), the effects of

moisture on the conditional instability of the environ-

ment (section 5), and how an entrainment assumption

that properly accounts for this moisture variability can

be a successful predictor of deep convective onset

(section 5). The convective environments in and around

Manaus, Brazil, as intensively observed during the

2-yr Green OceanAmazon 2014/15 (GoAmazon2014/5)

campaign are the primary focus, since its moderate di-

urnal and seasonal moisture variability create a nice test

case for evaluating the dependence of deep convection

on boundary layer and lower-free-tropospheric mois-

ture. We draw parallels where appropriate to the con-

vective environment in the tropical western Pacific using

data from the DOE Atmospheric Radiation Measure-

ment (ARM) site at Nauru. The relationship between

boundary layer and free-tropospheric moisture to con-

vective onset is quantified, and plume buoyancies com-

puted assuming deep-inflowmixing are compared to those

computed with more traditional mixing assumptions and

related to the observed onset of deep convection across

regions, seasons, and times of day, and for varying degrees

of convective organization.

2. Data

The data used in this study are taken from two DOE

ARM sites in the tropics. The first is the DOE ARM

Mobile Facility deployed as part of theGoAmazon2014/

5 field campaign (January 2014–December 2015; Martin

et al. 2016). All observations in this study were mea-

sured at the T3 site (3.218S, 60.608W, 50-m altitude) near

Manacapuru, Brazil, except for data from an S-band

radar at site T1 (3.158S, 59.998W) to the east of T3. The

results from the GoAmazon2014/5 site are compared to

5 years of data (2001–06) from a retired DOEARM site

in the tropical western Pacific at Nauru (0.528S, 166.98E;
7-m altitude).

a. Moisture

Thermodynamic profiles and CWV data from the ra-

diosondes were obtained from four- to five-times-daily

launches (0130, 0730, 1030—wet season only—1330, and

1930 local time) at the GoAmazon2014/5 site (ARM

Climate Research Facility 2013b) from Vaisala Digi-

Cora III sounding systems at 2-s resolution (Holdridge

et al. 2013). The raw sounding data were interpolated

to 5-mb intervals (1mb 5 1 hPa) for mixing computa-

tions in section 5. The reported uncertainties are ;5%

for relative humidity and;0.58C for temperature below

500mb. At Nauru, launches occurred twice daily (0000 and

1200 LT). We remove any radiosondes from the analysis

if rain occurred 4h prior to launch to avoid, as best as

possible, sampling within a cold pool and an environment

modified by precipitation processes (though the results

presented are robust to the inclusion of this threshold).

Microwave radiometer CWV from the GoAmazon2014/5

site using the microwave radiometer retrieval (MWRRET)

value-added product (ARM Climate Research Facility

2013a) following procedures outlined in Turner et al.

(2007) is employed in section 4. A linear interpolation

procedure is performed to gap fill CWV values across

time periods of 6 h or less. Interpolation is reasonable

given that the data gaps are typically short and the

temporal persistence of water vapor values for strong

convective events is on the order of hours (Holloway

and Neelin 2010), although quantitative differences can

be noted between different methods of filtering and in-

terpolation. Figure S1 in the online supplemental ma-

terial quantifies these differences by comparing different

interpolation methods and datasets, including those used

in Schiro et al. (2016). The linear interpolation proce-

dure likely underestimates peak CWV but is chosen as
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a conservative method. The data used in this study are

averaged at 12-min intervals to match the 12-min reso-

lution of the Doppler radar.

b. Precipitation

In situ precipitation at the GoAmazon2014/5 site are

from the Aerosol Observing System (AOS) and mea-

sured by the acoustic gauge of a Vaisala WXT520 me-

teorological station; these data are referred to as AOS

surface meteorology (AOSMET) precipitation (ARM

Climate Research Facility 2013c). When related to ra-

diosonde CWV, AOSMET precipitation is averaged at

2-h intervals centered 1h after radiosonde launch; this

interval was found experimentally to be the most robust

in capturing incidences of precipitation, given the limited

spatial information. For analyses with radiometer CWV,

AOSMET precipitation is averaged at 12-min intervals.

Radar-derived precipitation rates are also incorpo-

rated. These data were obtained from the Sistema de

Proteção da Amazonia (SIPAM) ground-based S-band

(10-cm wavelength), Doppler, single-polarized radar,

with a horizontal beamwidth of 0.968 and a vertical

beamwidth of 0.938 (Schumacher 2015). The radar scans

up to 17 elevation angles from 0.98 to 198 every 12min.

The reflectivity data are interpolated to the constant

altitude plan position indicator (CAPPI) data with a

horizontal resolution of 2 km and a vertical resolution of

0.5km (altitude ranges from 0.5 to 20km). A single

reflectivity–precipitation (Z–R) relation (Z5 174.8R1.56),

created using 2014 wet-season impact disdrometer data,

was applied by ARM to the 2.5-km SIPAM Manaus

S-band CAPPI data to generate rain rates for each radar

volume (by C. Schumacher, TexasA&M). These data are

then spatially averaged in 25- and 100-km grid boxes

surrounding the GoAmazon2014/5 site (T3), to provide

statistics comparable to that of typical GCM grid scales.

Based on typical propagation speeds of convective cells in

the Amazon (Vila et al. 2008), a 25-km gridbox average,

for example, is representative of approximately 1-h

temporal sampling. The 100-km grid box was shifted

slightly right of center from the T3 site (i.e., closer to the

location of the radar) as data are not recommended for

use for rain rate retrievals beyond a 110-km radius of

the radar.

c. Cloud-top height

Cloud-top height provides an additional measure of

deep convection to the convective onset statistics presented

in section 4. These data are obtained from a product pro-

vided through the DOE ARM program that uses the

95-GHz W-band ARM cloud radar (WACR), micropulse

lidar, and ceilometer data to produce cloud boundaries

using the WACR Active Remote Sensing of Clouds

(WACR-ARSCL) value-added product (ARMClimate

Research Facility 2014a,b). Cloud-top heights are av-

eraged at 1-h intervals, and cloud tops with bases greater

than 3km are excluded from the analysis to isolate deep,

convective clouds only.

d. Convection classification

Information about convection type is obtained from

composite S-band radar reflectivity in a 100-km grid box

surrounding theGoAmazon2014/5 site. Classifying deep

convection and organized convection using radar data

typically involves employing a maximum reflectivity

threshold in base reflectivity (e.g., Churchill and Houze

1984; Steiner et al. 1995). If this threshold exceeds

40 dBZ, it is typically convective, as stratiform precipi-

tation usually does not have such high base reflectivity.

Here, we employ a threshold of 45 dBZ to distinguish

convective from stratiform processes since we use

composite reflectivity instead of base reflectivity. Events

are grouped into four categories. Deep organized con-

vection associated with MCSs is classified as having

maximum reflectivity greater than or equal to 45 dBZ

and a spatial extent greater than 50km in one direction

(see also Fig. 3 of Schiro et al. 2018). Spatial extent is

defined by contiguous pixels with reflectivity greater

than 30 dBZ. A 50-km threshold is employed here,

rather than a more traditional 100-km threshold to

identify mesoscale convective systems (Houze 2004),

as a reasonable separation in order to include as many

convective events as possible. We denote this as

‘‘mesoscale,’’ noting the caveat that the spatial range

50–100km is included. ‘‘Smaller scale’’ events are defined

as the complementary set of convective events, with

reflectivity greater than 45dBZ but a spatial extent less

than 50km in one direction. These tend to be dominated

by locally occurring isolated cells, but we use the term

smaller-scale to emphasize that we have simply split the

spectrum of deep-convective organization by spatial

extent. Examples of mesoscale and smaller-scale events

are shown in Fig. S2. Other precipitation (other) is de-

fined by maximum reflectivity less than 45dBZ for any

spatial extent. Last, no precipitation (no precip) is defined

by maximum reflectivity less than 20dBZ throughout the

100-km domain.

3. Moisture vertical structure

A robust relationship exists between CWV and pre-

cipitation over tropical oceans (Bretherton et al. 2004;

Peters andNeelin 2006; Neelin et al. 2009; Holloway and

Neelin 2009; Ahmed and Schumacher 2015), which also

holds over tropical land (Schiro et al. 2016; Ahmed

and Schumacher 2017). This relationship depends on
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tropospheric temperature in ways that are more com-

plex than saturation because of the key role of condi-

tional instability associated with convection (Neelin

et al. 2009; Sahany et al. 2012). In this study, we go be-

yond this relation by characterizing the effects of vari-

ability inmoisture vertical structure regionally, seasonally,

and diurnally on convective onset, in order to better un-

derstand themechanisms throughwhich themoisture field

interacts with the convection through effects on condi-

tional instability.

Figure 1 shows the mean moisture structure (Fig. 1a)

and moisture variance profiles (Fig. 1b) throughout the

troposphere for Nauru in the tropical western Pacific

(black curve; see also Holloway and Neelin 2009) and

the GoAmazon2014/5 site (color). The results shown at

Nauru span the entire seasonal cycle, as there is little

variability seasonally (see Fig. S3). There is also little

variability in moisture diurnally, but we show this for

reference. At the GoAmazon2014/5 site, we define

seasons based on the two main patterns observed in

moisture variance, seen in Fig. 1b. This definition varies

from those traditionally used in the literature defining

wet, dry, and transition seasons in the Amazon (e.g.,

Machado et al. 2004). Since we are specifically examin-

ing variability in moisture vertical structure and its ef-

fects on conditional instability of the environment and

the onset of deep convection, the following definitions

based on moisture variance prove useful. We use two

seasons consisting of 6 months each—the wetter half of

the year [December–May (DJFMAM)] and the drier half

[June–November (JJASON)]—that will be compared

throughout the study. Additionally, we group sound-

ings into daytime (1030 and 1330 LT) and nighttime

(0130, 0730, and 1930 LT) based on the similarities in

their moisture variance profiles. This also aids in de-

veloping robust statistics, given the limited sampling of

the radiosondes.

During the wetter months (DJFMAM), the atmo-

sphere is moist throughout the entire troposphere and is

less variable than the drier season (JJASON), wherein

the humidity in the boundary layer and middle tropo-

sphere is more variable. Diurnal variability also exists in

the vertical moisture structure, most notably in the near-

surface layer but also in the lower free troposphere.

Compared to Nauru, along the eastern margin of the

warm pool in the tropical western Pacific, the boundary

layer at the GoAmazon2014/5 site is less moist, but the

lower free troposphere is moister. Moisture variance is

notably greater at Nauru, particularly in the lower free

troposphere, than it is at the GoAmazon2014/5 site.

Figure 2a shows the profiles of specific humidity

conditionally averaged by CWV for Nauru (dashed), as

shown in Fig. 3a of Holloway and Neelin (2009), over

top of the results for GoAmazon2014/5 (solid). The re-

sults in Fig. 2a are averaged for all times of day and all

seasons. For the same CWV values, the boundary layer

humidity is higher at Nauru than at GoAmazon2014/5,

and the lower free troposphere (;750–900 mb) is

moister at GoAmazon2014/5 than at Nauru, especially

at lower CWV. Above 700mb, the GoAmazon2014/5

site still has higher humidity on average, but the profiles

are more consistent across CWV. To summarize, the con-

tribution to totalCWVfrom theboundary layer atNauru is

larger, and thus the moisture content aloft is, on average,

lesser at Nauru than it is at the GoAmazon2014/5 site

for the same CWV. Thus, there are different moisture

profiles with the same total column humidity over land

and ocean, which likely contribute to differences observed

FIG. 1. (a) Mean specific humidity profiles averaged by time of day (nighttime: 0130, 0730, and 1930 local time;

daytime: 1030 and 1330 local time) and season (DJFMAM in blue; JJASON in orange) at the GoAmazon2014/5

site. Profiles of specific humidity for Nauru are overlaid for comparison (black). (b) As in (a), but for specific

humidity variance.
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in the onset of deep convection as a function of CWVover

land and ocean. For instance, the onset of deep convection

occurs at lower CWV over land than ocean (Schiro et al.

2016; Ahmed and Schumacher 2017). This will be ex-

plored further in section 5wherewe examine the effects of

moisture on conditional instability with simple mixing

parameterizations.

To examine the diurnal cycle and its relation to the

moisture vertical structure in greater detail with respect

to CWV at the GoAmazon2014/5 site, we condition-

ally average the specific humidity profiles on CWV of

daytime and nighttime soundings for DJFMAM (solid)

and JJASON (dashed) and zoom in on the structure in

the lower troposphere (700–1000mb) in Fig. 2b. Overall,

the boundary layer in the daytime is deeper (on the

order of 1 km), more variable, and spans a broader range

of specific humidity values with CWV than in the

nighttime boundary layer, which is much shallower (on

the order of a few hundred meters), less variable, and

spans a narrower range of humidity values with CWV. In

the drier months, the boundary layer contributes more

to the total column moisture than in the wetter months.

In the drier months during the day, total column mois-

ture is characterized by a narrower range of humidity

values in the lower free troposphere than in the wetter

months. Alternatively, above 700mb, total column

moisture is characterized by a broader range of humidity

values in the drier months than the wetter months for

both daytime and nighttime soundings (not shown). For

reference, Fig. S4 in the supplement shows the correla-

tion ofCWVwith specific humidity as a function of height

separated by time of day and season. Mean temperature

profiles were also examined at the GoAmazon2014/5 site

(Fig. S5). Temperature variability is largely confined to

the boundary layer, and temperature in the boundary

layer is inversely related to the moisture content.

Associated implications of differences in moisture

vertical structure (seasonally, diurnally, and across land

and ocean sites) will be explored in greater detail in

section 5 as we examine the relation between the mois-

ture vertical structure and the conditional instability of

the environment with entraining parcel models.

4. Convective onset statistics

a. Relationship to seasonal and diurnal cycles

The onset of deep convection, as shown by precipi-

tation and cloud-top height as a function of CWV, is

shown in Fig. 3 for DJFMAM day, DJFMAM night,

JJASON day, and JJASON night. The statistics are

shown for both in situ precipitation and precipitation

from the S-band radar, as well as for CWV from both

the microwave radiometer and radiosondes. Cloud-top

heights are derived from the W-band cloud radar. All

cloud tops with bases greater than 3km are excluded

from the statistics. It is evident that the conditionalmean

rain rate and cloud-top height, as well as the probability

of precipitation exceeding 0.5mmh21 and cloud-top

height exceeding 8km, sharply increase with CWV across

the diurnal and seasonal cycles.

During the daytime, precipitation is frequent, which is

evident in the PDFs of precipitating points in compari-

son to the total points. On average, the onset is observed

at slightly lower CWV in the daytime than at night

FIG. 2. (a) Specific humidity profiles averaged by CWV for Nauru (dashed) and GoAmazon2014/5 (solid).

Averages are for profiles sampled four times daily at GoAmazon2014/5 and two times daily at Nauru across all

seasons. (b) As in (a), but separated by season (wetter months: solid; drier months: dashed) and time of day [(top)

night and (bottom) day] for GoAmazon2014/5 profiles only in the lower troposphere (700–1000mb).
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(;55mm in the daytime and ;60mm at night for the

wet season; onset defined loosely as the CWV value at

the start of the sharp increase in conditional average

in situ precipitation), and at higher CWV in the wetter

months than in the drier months (;52mm in the dry

season vs ;59mm in the wet season). Additionally, in

the drier months, the range of CWV observed is wider

than that observed during the wetter months. In the

daytime, the lower-tropospheric moisture is higher than

in the nighttime for the same CWV value and for the dry

season in comparison to the wet season (Fig. 2). Knowing

this, it is thus likely that differences in lower-tropospheric

moisture content, rather than total column moisture, are

most important to the onset of deep convection, thus

contributing to the differences observed in the onset

with respect to CWV regionally, seasonally, and diur-

nally. In section 4c, we go a step further and divide the

lower troposphere into contributions from the boundary

layer and free troposphere to examine their respective

influences.

FIG. 3. Convective onset statistics at theGoAmazon2014/5 site for (first row)DJFMAMday, (second row)DJFMAMnight, (third row)

JJASONday, and (fourth row) JJASONnight for 12-min-averagemicrowave radiometerCWVand in situ precipitation (blue stars), radar

precipitation within a 25-km grid box (green circles), radar precipitation within a 100-km grid box (yellow stars), andW-band cloud radar–

derived cloud-top height (3), as well as radiosonde-derived CWV with 1-h average in situ precipitation (blue circles). (left) The pre-

cipitation conditionally averaged by CWV. (center) Probability of precipitation greater than 0.5mmh21 and cloud-top height greater than

8 km in each CWV bin. (right) The probability density of radiometer (black squares) and radiosonde (gray squares) CWV, and of

precipitating points for each retrieval (colors).
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It is worth noting that these characteristics defining the

onset are consistent across all observational platforms, yet

the sampling limitationof the radiosondeand in situ–derived

statistics in comparison to the radiometer- and radar-derived

statistics is apparent. Throughout the remainder of the

study, we use radiosonde-derived thermodynamic quanti-

ties in relation to in situ and radar precipitation, since we

wish to examine the vertical moisture structure within the

context of the conditional instability of the environment.

Figure 3, however, provides some context for the robustness

of the statistics when the sample size is increased.

b. Convective organization

To examine the onset as it relates to convective or-

ganization, radar data are employed to characterize the

level of organization of the convection within a 100-km

grid box surrounding the GoAmazon2014/5 site within

an hour of radiosonde launches. As described in section

2d, convection is classified as deep if the composite radar

reflectivity exceeds 45 dBZ. The convection is denoted

as mesoscale when it exceeds 50 km in one linear di-

mension (contiguous reflectivity.30dBZ), and smaller-

scale for anything less than 50km (see also Schiro et al.

2018). This information is displayed in a histogram in

the left column of Fig. 4, with the probability of pre-

cipitation (precipitation rates greater than 0.75mmh21)

as a function of radiosonde-derived CWVoverlain.Moving

forward, all radiosondes launched after precipitation events

up to 4h prior are eliminated from this analysis to reduce

the likelihood of sampling air directly modified by pre-

cipitation processes. Nevertheless, the results presented are

robust to the inclusion of such a threshold. For the proba-

bility, only bins including five or more samples are plotted.

The information in Figs. 4a and 4b is complementary

to that presented in Fig. 3: the probability of precipita-

tion is the same except for being matched to radiosonde

CWV and using 1-h averages of the radar data instead of

12-min averages, and the histogram presented is a more

detailed look at the event type contributing to the dis-

tribution of precipitating points. The right column ex-

amines the fraction of the total observations that were

classified as deep convection (all deep convection: gray

stars; organized deep convection: red circles; cellular deep

convection: blue squares). The gray stars share a symbol

with the yellow stars in the left panel to signify their

similarity, as the gray stars are derived from the classifi-

cation at 100km and the yellow stars are derived from

reflectivity-derived precipitation in the 100-km domain.

The onset of deep convection occurs with increasing

total moisture in the column (Figs. 4a,b). The average

probability of precipitation is greater at 100 km than

at 25 km and in situ because the likelihood of observ-

ing precipitation increases as the size of the grid cell

increases [the quantitative increase depends on the spa-

tial autocorrelation properties of the precipitation; values

here are approximately consistent with satellite obser-

vations in Kuo et al. (2018)]. Isolated cells are the most

common deep convection type, with mesoscale deep

convection a larger fraction of the total at high CWV. A

key finding is that the mesoscale deep convection and

more local, smaller-scale convection are both sensitive to

the humidity in the atmosphere, and the occurrence of

both convective types sharply increases with increasing

CWV. Smaller-scale convection is, however, observed

at CWV in the 40–50-mm range, whereas the probabil-

ity of organized convection picks up at higher CWV

(;53–58mm). This will be explored further in section 4c

as a function of layer-mean moisture.

c. Boundary layer versus free troposphere

We now examine the respective relationships of bound-

ary layer (chosen conservatively here to be between

950–1000mb; ;450-m thickness) and free-tropospheric

humidity (700–900mb; ;2.1-km thickness) to deep

convection and the spatial scales at which convection

occurs. Much of the relation between deep convection

and CWV can be explained by its relation to free-

tropospheric moisture (Figs. 4c,d). Some of the re-

lation can also be explained by boundary layer humidity

(Figs. 4e,f), although this relationship is less pro-

nounced on average. (For information about the sensi-

tivity of these results to layer averaging, see Fig. S6 and

corresponding discussion in the supplement.)

Figure 5 is the same as Fig. 4 for the free troposphere

but separates out the analysis by time of day and season.

The probabilities of precipitation for in situ, 25-km ra-

dar, and 100-km radar precipitation all increase sharply

with increasing lower-free-tropospheric humidity for all

seasons and times of day; the one exception is the dry-

season nighttime (Fig. 5g), whose probabilities are lower

(,25%). It appears for this case that high humidity in

the lower free troposphere does not guarantee convec-

tion, but when convection is observed it occurs in humid

environments only (roughly.21mm). Additionally, the

probability of both smaller-scale and mesoscale deep

convection increases sharply with increasing humidity in

the wet season (Figs. 5b,d). The same is true in the dry-

season daytime, but there is a moderately high proba-

bility (.35%) of smaller-scale convection even for

lower humidity (Fig. 5f). Isolated, cellular deep con-

vection is ubiquitous throughout the domain during the

daytime hours in all seasons and is the most frequent

type of deep convection observed (Figs. 5a,e). At night,

however, the probabilities of both convection types

are equally likely (Figs. 5c,g) and increase sharply with

increasing lower-free-tropospheric humidity (Figs. 5d,f).
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Overall, the occurrence of both smaller-scale and me-

soscale convection is strongly tied to the lower-free-

tropospheric humidity (Figs. 5b,d,f,h), with occurrence

of smaller-scale convection at lower humidity in the

daytime hours (particularly the dry season; Fig. 5f).

The role of the boundary layer is depicted in Fig. 6,

where the probability of precipitation and frequency of

deep convective events show a strong relation to the

boundary layer humidity (1000–950mb) during the

daytime (Figs. 6a,b,e,f). At night (Figs. 6c,d,g,h), this

relationship is less discernable. The nocturnal boundary

layer, often shallower than 950mb, is much less variable

than the daytime boundary layer and maintains high

humidity at nearly constant values. A layer of convective

inhibition develops, and in some instances, is possibly a

hindrance to the development of convection without

the presence of mechanical lifting or erosion by solar

heating in the morning hours. Smaller-scale convection

FIG. 4. (a),(c),(e) Histograms of convection type as classified using radar reflectivity and precipitation area within a

100-km grid box surrounding the GoAmazon2014/5 site (black: mesoscale deep convection $45 dBZ and at least

50 kmwide in one direction; dark gray: smaller-scale deep convection$45 dBZ and,50 kmwide in onedirection; light

gray: other precipitation with reflectivity,45 dBZ; white: no reflectivity signature $20 dBZ detected in the domain)

and probability of precipitation greater than 0.75mmh21 from in situ rain gaugemeasurements (blue diamonds), radar

precipitationwithin a 25-kmgrid box around theGoAmazon2014/5 site (green circles), and radar precipitationwithin a

100-km grid box around the GoAmazon2014/5 site (yellow stars) conditionally averaged by integrated humidity in

(a),(b) the total column from200 to 1000mb, (c),(d) the lower free troposphere (700–900mb), and (e),(f) the boundary

layer (950–1000mb). (b),(d),(f) The fraction of the total deep convective events (gray stars), smaller-scale deep con-

vection only (blue squares), and mesoscale deep convection (red circles) with rain rates greater than 0.75mmh21.
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increases sharply with increasing humidity during the

daytime, while mesoscale convection does not appear

to be as tied to the boundary layer humidity. Both the

probabilities of precipitation (Figs. 6a,c,e,g) and the

probability of deep convection (Figs. 6b,d,f,h) show that

the relation to the boundary layer ismuchweaker during

the nighttime than daytime.

Overall, deep convection of all types, in all seasons,

and at all times of day occurs more frequently with

increasing lower-free-tropospheric humidity. The occur-

rence of mesoscale deep convection appears most strongly

tied to lower-free-tropospheric humidity. The boundary

layer is also strongly related to convective onset, but this is

mainly true for the daytime and smaller-scale convection

only. This is consistent with what we know of diurnally

forced convection over land (e.g., Nesbitt andZipser 2003).

For reference, variants of these statistics for the boundary

layer and lower free troposphere are reproduced in the

FIG. 5. As in Fig. 4, but for integrated humidity in the free troposphere (700–900mb) only during (a),(b) DJFMAM

day, (c),(d) DJFMAM night, (e),(f) JJASON day, and (g),(h) JJASON night.
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supplemental material (Figs. S7 and S8) as a function of

their respective layer saturation.

5. Relating observed deep convection to plume
buoyancy under different mixing assumptions

In section 4, we examine the relation between deep

convection andmoisture and how variability in moisture

vertical structure contributes to variability in deep

convective onset as a function of total column moisture.

It was also shown that both mesoscale and smaller-scale

convection show a strong relation to lower-tropospheric

moisture, particularly in the free troposphere. CWV has

proven useful in previous studies since it is commonly

available from GCM output and satellite retrievals

(over ocean), and since it is a good proxy for conditional

FIG. 6. As in Fig. 5, but for integrated humidity in the boundary layer (950–1000mb).
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instability over land and ocean (Holloway and Neelin

2009; Schiro et al. 2016). Here, since we have additional

data available—vertical moisture structure and infor-

mation about diurnal variability and convection type—

we have the opportunity to test various assumptions

of parcel buoyancy against observed deep convection

across a range of conditions. Thus, in section 5, we refine

our analysis by replacing CWV by measures explicitly

based on the conditional instability of the environment,

using different postulates for mixing as it affects plume

buoyancy.

GCMs all make assumptions about buoyancy that, in

combination with other parts of the deep convective

closure scheme, yield precipitation. We thus ask how

strong a relation to observed deep convection can be

achieved with a single, physically consistent plume

buoyancy formulation. We estimate plume buoyancy

using the thermodynamic equation of a plume model

[e.g., Masunaga and Luo 2016, their Eq. (10)], much

like a GCM would in convective parameterization. The

interpretation is necessarily done in the framework of

convective plumes, but we note that we do not model

plume vertical velocity dynamically (e.g., Masunaga and

Luo 2016); rather, we constrain it with fixed assumptions

of the total entrainment based on observational esti-

mates (Schiro et al. 2018). Ideally, a bulk measure of

buoyancy given a realistic, physically based assumption

would show strong relation to observed precipitation

and deep convection over awide range of environmental

conditions. Our exploration of thermodynamic controls

in the previous section suggested that the consistent re-

lation to lower-tropospheric moisture, particularly in the

lower free troposphere, provides some indication that

buoyancy is largely dependent on the moisture available

in this layer, and that a model of plume buoyancy that

adequately accounts for variability in this quantity could

yield consistent results under a range of environmental

conditions (e.g., across seasons, diurnal cycle, regions,

and even for different convection types).

Deep-inflow mixing (Holloway and Neelin 2009;

Sahany et al. 2012; Schiro et al. 2016, 2018) is a term we

adopt to describe mixing formulations that assume up-

draft mass flux in deep convection increases nearly

linearly through a deep lower-tropospheric layer. A

combination of observational and numerical results in

the literature suggests that this layer can commonly be

3–4km thick (Lucas et al. 1994; Robe and Emanuel 1996;

Kingsmill and Houze 1999; Mechem et al. 2002; Wang

and Liu 2009; Mrowiec et al. 2012; Yeo and Romps 2013;

Kumar et al. 2015, 2016; Giangrande et al. 2016; Schiro

et al. 2018), though the depth can be smaller, possibly

dependent on storm dynamics and the thermodynamic

environment (e.g., Mechem et al. 2002), and there exist

examples of exceptions to this behavior (Anderson et al.

2005; Mishra and Srinivasan 2010; Zhu 2015; Yang et al.

2016). Schiro et al. (2018) find details of the vertical shape

of the mass flux and depth of the layer are less important,

so long as the inflow produces an updraft with bulk

properties of a lower-tropospheric layer rather than a

surface parcel. Evidence of ‘‘layer lifting’’ in modeled

(Mechem et al. 2002) and observed (Kingsmill and

Houze 1999) mesoscale convective systems is sugges-

tive of the role of coherent structures in deep-inflow

mixing. Deep-inflow mixing can also be inferred from

mass flux profiles (LeMone and Zipser 1980; Robe and

Emanuel 1996; Yeo and Romps 2013; McGee and

van den Heever 2014; Kumar et al. 2015, 2016;

Giangrande et al. 2016; Schiro et al. 2018), although

this does not distinguish between the roles of coherent

structures versus turbulence. We note that the deep-

inflow framework is agnostic to themechanism through

which the air becomes incorporated into the plume

(e.g., it could occur partly through organized inflow at

the plume scale or mesoscale in addition to small-scale

turbulence).

It is reasonable to conjecture that this scheme might

apply to the mesoscale-organized convection identi-

fied in the analysis above, in addition to smaller-scale

deep convection. Schiro et al. (2018) highlight the

physical interpretation of such an assumption, its esti-

mation from radar-derived mass flux, ways in which this

helps to reframe a problematic dependence on tunable

coefficients in convective parameterizations, and its val-

idity for both mesoscale and smaller-scale deep convec-

tive structures. Here, we are able to examine its validity

over the seasonal and diurnal cycle and formesoscale and

smaller-scale convection in the Amazon given the ex-

tensive suite of instrumentation deployed as part of the

GoAmazon2014/5 campaign, an otherwise difficult task

using large, gridded datasets.

a. Formulation

If detrainment is neglected, an entrainment profile

can be calculated for any correspondingmass flux profile

from mass continuity. We can derive mixing coefficients

xk 52m21(›m/›p)Dp, where m is the mass flux, p is

pressure, and k is the pressure level, with Dp defined to

be positive. Though we demonstrate that local mixing

coefficients can be calculated from a mass flux profile

here, it is not necessary to perform the calculation and

estimate buoyancy in this way (see also Schiro et al.

2018). If mass flux increases with height throughout

the lower troposphere, this would suggest large lower-

tropospheric entrainment rates. The weighting of the

conserved environmental variable ~r, or the influence

function I(zB, z) of the environment on the properties of
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the updraft r at height zB, is given by the vertical rate of

increase of mass:

r(z
B
)5

ðzB
z0

I(z
B
, z)~r(z) dz’

1

m(z
B
)

ðzB
z0

~r
›m

dz
dz . (1)

Schiro et al. (2018) note the derivation of this for layer

integrals that may be robust to nonlocal mixing, but it is

consistent with the common local mixing formulation

›r/›z5 �(~r2 r) (the change in a conserved quantity with

height) and mass continuity combined in pressure co-

ordinates and integrated over pressure. If the plume’s

mass is increasing linearly with height, this reduces to a

vertical average of all levels r(zB)5 (zB 2 z0)
21Ð zB

z0
~r dz,

with I(zB, z) constant in height. This corresponds to a

local mixing of �5 z21. The influence function helps to

clarify that aweighted vertical averageof lower-tropospheric

thermodynamic properties affecting buoyancy arises

naturally from entraining plumes that grow with height

through a lower-tropospheric layer in a way that is more

difficult to see from a traditional parcel model, even

though the deep inflow can be mathematically mapped

onto a parcel-like computation for numerical and com-

parison purposes. It is worth underlining that a constant

or slowly varying influence function removes the need

for a disproportionately influential initial parcel.

Though we implement two specific assumptions of

deep-inflow mixing here (‘‘deep-inflow-A’’ and ‘‘deep-

inflow-B’’), we do not limit our definition of deep-

inflow mixing to these specific schemes. Deep-inflow-A

(Holloway and Neelin 2009; Sahany et al. 2012; Schiro

et al. 2016) is given from an LES-based estimate of

the vertical dependence of the mixing coefficient re-

ported in Siebesma et al. (2007), where the mixing co-

efficient has an inverse dependence on height following

xkDp5 c�z
21
k Dzk, where c�5 0.4, z is the height, and Dzk

is the depth of the layer. Deep-inflow-B uses an ideal-

ized updraft vertical velocity that increases nearly line-

arly with height with 0m s21 at 1000 hPa and its

maximum at 7 km (430 hPa). This shape profile was

chosen based on observed profiles from aircraft cam-

paign data (e.g., LeMone and Zipser 1980) and radar

wind profiler observations of vertical velocity (e.g.,

Giangrande et al. 2016; Schiro et al. 2018). In Schiro

et al. (2018), observations of vertical velocity are com-

posited for both smaller-scale and mesoscale systems,

showing that for both types of systems, the mass flux

increases nearly linearly through adeep lower-tropospheric

layer, motivating the assumptions for the mass flux

profile in deep-inflow-B here. The mixing coefficients

are computed from the vertical gradient of the specified

updraft vertical velocity profile, with the mixing coeffi-

cient set to zero above 7 km (under the postulate that

there is negligible mixing above the level where mass

flux no longer increases). Entrainment in both deep-

inflow-A and deep-inflow-B scale as z21, yet there is

some evidence in the literature pointing to the impor-

tance of other scaling (e.g., Romps 2010; Hernandez-

Deckers and Sherwood 2018).

Here, we analyze four different mixing scenarios for a

rising plume: (i) no mixing, (ii) constant mixing at a rate

of 0.001 hPa21 (Brown and Zhang 1997; Holloway and

Neelin 2009; Sahany et al. 2012), (iii) deep-inflow-A

mixing, and (iv) deep-inflow-B mixing. Though our

conceptual framework for mixing is applicable to rising

plumes, the computations can bemapped onto those of a

parcel model. Thus, we will describe the physics within a

rising plume framework throughout, though the mixing

is computed as follows:

r
k
5 (12 x

k21
Dp)r

k21
1 x

k21
Dp~r

k21
, (2)

where r is the conserved variable (ice–liquid water po-

tential temperature), ~r is the corresponding environ-

mental variable, k is the pressure level, Dp is the

pressure interval, and x is the mixing coefficient. For all

mixing assumptions that include freezing, liquid water is

converted to ice conserving the ice–liquid water poten-

tial temperature when the plume reaches 08C and latent

heat is released into the plume. All parcels originate at

1000mb, and buoyancy is computed between 1000 and

200mb in this analysis (unless otherwise noted). All

computations are performed in pressure coordinates.

For reference, a case with no mixing is also shown.

Though highly simplified, the rising parcel proves

useful for testing consistencies between buoyancies es-

timated from a variety of mixing assumptions and the

occurrence of deep convection using field campaign

observations. However, as previously mentioned, we

do not necessarily advocate for the use of parcel-based

methods inGCMparameterization. Thoughwe choose to

implement deep-inflow mixing into our current analysis

using traditional methods, the deep-inflow framework

is one in which bulk lower-tropospheric thermody-

namics represent the influence of the environment on

plume buoyancy, regardless of the exact mathematical

implementation in parameterization (Schiro et al. 2018).

b. Profiles

Figure 7 compares the calculated buoyancy profiles

between the GoAmazon2014/5 site and Nauru for the

range of mixing assumptions described above and ex-

amines their consistency to the onset of deep convection

observed with increasing humidity. All profiles are vir-

tual temperature profiles derived from the radiosondes.

Environmental profiles are subtracted from the plume
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computations, which originate at 1000mb (near sur-

face). Profiles in Fig. 7 are averaged for all times of day

and all seasons. These profiles can be directly compared

to Figs. 1 and 2 in Schiro et al. (2016), which are figures

illustrating the onset of precipitation as a function of

CWV; for example, if buoyancies are generally positive

in our experiment here, that should correspond to ob-

served precipitation rates greater than 0 within that

CWV bin. It is worth noting again that, unless separated

by time of day, the analysis at the GoAmazon2014/5 site

will be more representative of the nighttime soundings

than the daytime soundings because of a higher frequency

of nighttime soundings.

Figure 7a is the simplest case, which assumes no

mixing with the surrounding environment, and thus the

buoyancies are largely dependent on the characteristics

of the plume at its level of origin. This yields results

inconsistent with the onset of precipitation at a critical

value of CWV (e.g., Fig. 4 herein; see also Fig. 3a in

Holloway and Neelin 2009; Fig. 2a in Schiro et al. 2016)

over both land and ocean, since buoyancies are positive

through the free troposphere for all CWV at Nauru and

GoAmazon2014/5 (above a layer of convective inhibition

in the nighttime hours at GoAmazon2014/5). This would

imply conditional instability available to deep convection,

even under CWV conditions for which little occurs. Ad-

ditionally, at the GoAmazon2014/5 site, the lower-CWV

cases are more buoyant than the higher-CWV cases.

This is largely because, on average, 1000-mb moisture is

similar across CWV values at GoAmazon2014/5, yet the

free troposphere is cooler on average for lowerCWV(not

shown). Thismeans that the parcel originating at 1000mb

starts off just as buoyant as the high-CWV parcels, but

then travels through cooler, denser air aloft, enhancing

parcel buoyancy. The excessive buoyancy for this case

occurs evenwithout the inclusion of freezing, which tends

to enhance buoyancy in the upper troposphere.

In comparison to the no-mixing case, the constant-

mixing case shows some improvement in matching

buoyancy with the onset of precipitation in that the

buoyancy is small or negative for the lowest CWVvalues

at both Nauru and GoAmazon2014/5 (Fig. 7b). For the

GoAmazon2014/5 site, the inverse relationship between

buoyancy and CWV seen in the 600–800-mb layer is still

apparent, yet there exists a consistent relation to CWV

in the layers above. In these figures, the rapid-freezing

FIG. 7. Mean virtual temperature differences between plumes originating at 1000mb and their surrounding

environments conditionally averaged by CWV for (a) no mixing, (b) constant mixing (0.001 hPa21), (c) deep-

inflow-A mixing, and (d) deep-inflow-B mixing for Nauru (dashed) and GoAmazon2014/5 (solid).
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assumption allows the contribution of the latent heating

of freezing to buoyancy at upper levels to be easily seen;

more gradual freezing would spread this increase across

the layers above. If freezing is not included, this scheme

would appear more consistent with the pickup in pre-

cipitation at Nauru (Holloway and Neelin 2009). With

freezing, it suggests conditional instability through a

deep layer even for fairly low values of CWV.

Figures 7c and 7d show that including inflow from a

substantial lower-tropospheric layer using deep-inflow

mixing yields a more robust relationship between plume

buoyancies calculated and the sharp increase in

precipitation observed with increasing CWV (Holloway

and Neelin 2009; Schiro et al. 2016) than the other re-

lations in Figs. 7a and 7b for both land and ocean cases.

In other words, plume buoyancies are generally negative

throughout the column for CWV values at which pre-

cipitation is not observed and positive for values of

CWV at which precipitating events are observed (see

Schiro et al. 2016, Figs. 1 and 2 therein). It should be

noted that these calculations can be sensitive to micro-

physical assumptions (not shown), such as the removal

of condensate within the calculation, which can increase

(decrease) buoyancies in the lower to middle (upper)

troposphere (Zhuang et al. 2018). Overall, for a plume

originating from the boundary layer, mean plume buoy-

ancies with respect to CWV are most consistent with the

sharp increase in precipitation observed throughout the

depth of the troposphere for assumptions that include

substantial mixing through a deep lower-tropospheric

layer over both land and ocean.

In a complementary study, Ahmed and Neelin (2018)

reverse engineer an idealized mass flux profile from the

observed water vapor–precipitation relation using re-

analysis and satellite data, which increases nearly line-

arly in height throughout the lower troposphere. They

find that precipitation increases sharply with increasing

buoyancy (computed using the deep-inflow assumption

derived) over both land and ocean regions in the tropics.

Though different approaches, the results presented in

Fig. 7 and those of Ahmed and Neelin (2018) suggest

that the CWV–precipitation relation is primarily a

function of variability in moisture in the lower tropo-

sphere over land and ocean, and that entraining plume

buoyancies are most realistic when such variability is

appropriately considered in entrainment assumptions.

Figure 8 examines theGoAmazon2014/5 case in greater

detail. Since there is more variability in the moisture

vertical structure as a function of time of day and season

at this site, we can gain insight from how moisture var-

iability affects buoyancy and thus the onset of deep

convection. We examine this in Fig. 8 by checking for

consistency between the observedmoisture–precipitation

relations (Fig. 4) and the onset as given by the buoyancy

profiles. Results are shown for buoyancies computed

using constant mixing with freezing (0.001hPa21; dashed

lines) and deep-inflow-B with freezing (solid lines) for

plumes originating at 1000mb. The onset occurs at lower

total CWV in the dry season than the wet season, and in

the daytime compared to nighttime, as is shown in Fig. 3.

This is most likely a result of the greater moisture in the

boundary layer and lower free troposphere for the same

CWV values (see Fig. 2), yielding more buoyancy.

For the case of constant mixing, the boundary layer

and lower free troposphere are treated unequally,

placing greater weight on the boundary layer. The

constant-mixing case appears to be too buoyant (in the

sense that it predicts deep conditional instability at

CWV values for which little precipitation is observed) at

all times. Increasing the entrainment coefficient helps

to a certain extent (see Fig. S9), but since it decreases

buoyancy relatively uniformly throughout the whole

column, rather than enhancing mixing in the lower tro-

posphere only, there is an upper limit to the coefficient

before significantly reducing buoyancy above the freezing

level to values no longer consistent with deep convection.

Raising the parcel from above the boundary layer also

reduces the spurious prediction of deep conditional in-

stability at intermediate CWVvalues to some degree (see

Fig. S10), although it is unphysical to assume a parcel

originates from925mb all the time.Overall, the constant-

mixing case is limited in its representation of diurnal

and seasonal variability in convective onset as a function

of CWV. This suggests that its weighting of lower-

tropospheric air, placing greater emphasis on boundary

layer air, is not optimal.

For the deep-inflow-Bmixing case, which accounts for

nearly equal weighting of boundary layer and lower-

free-tropospheric humidity, the range of CWV values at

which the plumes become positively buoyant (DTy . 0)

is generally consistent with the approximate CWV

values at which the onset can be observed in Fig. 3 for all

times of day and seasons. While we are careful not to

suggest this as the optimal weighting, we note that

mixing of such proportions can capture diurnal and

seasonal variability in buoyancy consistent to the ob-

served onset. However, Schiro et al. (2018) found that

varying the details of the weighting of the lower free

troposphere and boundary layer air are insignificant to

the relation to the onset of deep convection, so long

as the contribution from the lower free troposphere is

substantial. The ratio of free-tropospheric moisture to

boundary layer moisture varies seasonally and diurnally

(Fig. 2), but the consistency between the observed onset

and deep-inflow mixing suggests that this variability

appears less important than the total moisture content.
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In other words, the deep-inflow scheme appears to be

giving sufficient weight to lower-free-tropospheric mois-

ture, consistent with its importance as a key thermody-

namic variable controlling convective onset. It should

also be noted that though temperature variability can

contribute significantly to plume buoyancy, it tends to be

inversely related to specific humidity in the lower tropo-

sphere in the Amazon (Fig. S5), and is not a primary

control on deep convection, as indicated by buoyancy

calculations in which temperature and moisture are held

fixed in turn (Fig. S11; see also Zhuang et al. 2018).

Surely for some optimal constant value, at some op-

timal level in the atmosphere at which buoyancy is

evaluated (e.g., cloud-top height, without freezing;

Brown and Zhang 1997)—depending also on the mi-

crophysical assumptions—one could argue that a

constant-mixing assumption could work well. The

problem, however, is that this constant is nearly

impossible to observe and is difficult to deduce from

modeling experiments. The deep-inflow assumption, on

the other hand, is consistent with the presented (and

preexisting) evidence surrounding the influence of

lower-free-tropospheric humidity on convection, rela-

tively insensitive to its exact formulation, and simplifies

an otherwise complex dependence on tunable coeffi-

cients (Schiro et al. 2018). For reference, local entrain-

ment coefficients used here are shown for the lower free

troposphere in Fig. S12 of the supplemental information,

along with influence functions for deep-inflow cases.

c. Onset of deep convection as a function of buoyancy

We now examine how strong a relation to observed

deep convection an integral measure of buoyancy can

yield. For simplicity, we use the mean parcel buoyancy

[B5 g(Ty,p 2Ty,e)/Ty,e] from 200 to 1000mb as the in-

tegral measure, since we want to consider a quantity that

transitions smoothly from negative to positive and in-

cludes both the lower and upper troposphere. Schiro

et al. (2018) found that the relation between the inte-

grated buoyancy and the onset of deep convection is

largely insensitive to the choice of layer through which

the buoyancy is integrated. Figure 9 shows the histo-

grams of convection type, probability of precipitation,

and probability of observing mesoscale and smaller-scale

FIG. 8. Mean virtual temperature differences between plumes originating at 1000mb and their surrounding

environments conditionally averaged by CWV for deep-inflow-B (solid) and constant 0.001-hPa21 (dashed) mixing

with ice at the GoAmazon2014/5 site for (a) DJFMAM day, (b) DJFMAM night, (c) JJASON day, and

(d) JJASON night.
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convection as a function of buoyancy computed with

three different assumptions ofmixing: (i) nomixing, using

the traditional convective available potential energy

[CAPE 5
Ð LNB

LFC
g(Ty,p 2Ty,e)/Ty,e dz, where LNB is the

level of neutral buoyancy, LFC is the level of free con-

vection, Ty,p is the parcel virtual temperature, Ty,e is the

environmental virtual temperature, and g is the accel-

eration due to gravity] computed irreversibly without

mixing; (ii) constant mixing (0.001 hPa21) with freezing

(Fig. 9b); and (iii) deep-inflow-B mixing with freezing

(Fig. 9c). Given that layer-integrated water vapor

quantities exhibit strong relations to a pickup in pre-

cipitation probability, we seek a buoyancy-based cal-

culation showing at least as strong a relationship.

Precipitation probability conditioned on buoyancy

computed using a deep-inflow mixing assumption in-

deed yields a strong pickup above a threshold value.

In this sense, deep-inflow-B buoyancy can be termed a

good predictor for precipitation probability. Both the

strong increase in probability of precipitation at high

buoyancy values, as well as the high probability of no

precipitation that can be inferred at low buoyancy

values, could be equally helpful for model diagnosis.

Precipitation probability conditioned on buoyancy

computed using nomixing (see also Fig. S13) or constant

mixing yield less strong relationships. As mentioned

previously, increasing the entrainment coefficient in

the constant-entrainment case helps somewhat, but in-

creasing it too much tends to shift the entire plot toward

negative buoyancy (not shown). Buoyancies start be-

coming strongly negative before a relation that closely

resembles that between precipitation and buoyancy

from deep-inflow mixing emerges.

We then explore the potential utility of deep-inflow

mixing as a predictor of precipitation probability across

seasons and times of day in Fig. 10. We conjecture that

since there is a strong relationship to 700–900-mb hu-

midity across the diurnal and seasonal cycles (Fig. 5), an

assumption that more heavily weights the contribution

of the lower free troposphere to buoyancy will show a

more consistent relation to the probability of precipitation.

Figure 10 also examines the utility of a deep-inflow

FIG. 9. As in Fig. 4, but binned by buoyancy computed with the following assumptions: (a),(b) CAPE computed

irreversibly, (c),(d) constant mixing at 0.001 hPa21 with freezing, and (e),(f) deep-inflow-B mixing with freezing.
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assumption as a predictor of deep convection occurring

in mesoscale systems versus smaller-scale convection.

One can ask whether buoyancy based on a single mixing

parameterization can yield strong relationships to the

probability of precipitation for both larger mesoscale

and local smaller-scale convection across the seasonal

and diurnal cycles, a difficult task.

For all deep convection (gray bars) in Fig. 10, this

holds reasonably well: there is always a transition from

low probability of precipitation at negative values of the

estimated buoyancy to higher probability in the vicinity

of zero or above. We note the caveat that the jump to

higher probability in the dry-season daytime occurs at

negative values of the buoyancy estimate and has sub-

stantial error bars. With the caveat that the number

of samples is modest in some panels of Fig. 10 and

the pickup for mesoscale systems is clearest at night,

the relation between plume buoyancy computed with

deep-inflow mixing and both mesoscale and smaller-

scale convection tends to hold across the seasonal and

FIG. 10. (left) Probability and frequency of precipitation and deep convection conditionally averaged by buoy-

ancy for (a) DJFMAMday, (c) DJFMAMnight, (e) JJASON day, and (g) JJASON night. (right) Probability of all

deep convective events (gray stars) as determined by the fraction that are mesoscale (red circles) vs smaller-scale

(blue squares) for (b)DJFMAMday, (d)DJFMAMnight, (f) JJASONday, and (h) JJASONnight. Buoyancies are

computed with deep-inflow-B mixing, and all condensate is frozen at 08C.
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diurnal cycles in the Amazon. This is suggestive of a

single scheme’s applicability, at least as a first approxi-

mation, to both convective types for convective closure

and the potential to alleviate biases in the diurnal cycle

of convection and precipitation over land. Moreover,

using a mixing assumption that includes sufficient mix-

ing from the lower free troposphere and has no explicit

dependence on a tunable mixing coefficient (Schiro

et al. 2018), a similarly strong relation to that of deep

convection and humidity is captured by an integral

buoyancy measure.

6. Conclusions

A robust relation between CWV and precipitation

over land and ocean (seen here and in previous studies)

provides a useful model constraint for the onset of deep

convection. The GoAmazon2014/5 campaign (2014/15)

nearManacapuru, Brazil, provides a unique opportunity

to study how variability in moisture vertical structure

and conditional instability of the environment control

deep convective onset for smaller-scale and mesoscale

convection alike, a difficult task inmany regions because

of observational constraints. Results shown previously

for a tropical oceanic environment at the DOE ARM

site at Nauru in the tropical western Pacific are exam-

ined as a basis for comparison.

There is little variability in moisture vertical structure

across the seasonal and diurnal cycle at Nauru. The

Amazon, however, has both a distinct seasonal and di-

urnal cycle in moisture vertical structure and associated

variability. This makes the Amazon a good test case for

examining variability in the moisture field and its effects

on deep convection in the tropics. Mean moisture pro-

files show that the boundary layer at Nauru is moister

than in the Amazon, while the lower free troposphere is

drier. Moisture variance is large in the free troposphere

at Nauru and the GoAmazon2014/5 site. The maximum

(near 800mb) is larger at Nauru thanGoAmazon2014/5,

and over land this maximum (;700mb) is most evident

in the drier months. During the wet season, moisture is

less variable and more uniform throughout the column.

Over land, where larger diurnal and seasonal cycles

exist, the onset of deep convection is strongly tied to

lower-free-tropospheric moisture (700–900mb) across

all seasons and times of day, whereas the onset shows a

strong relation to boundary layer moisture during the

daytime only. The onset is characterized by the occur-

rence of locally occurring smaller-scale convection, as

well as larger, mesoscale convective systems. During the

daytime, smaller-scale convection is the most common

convection type whereas mesoscale convective sys-

tems are a larger fraction of the total convection

occurring during nighttime. The probability of me-

soscale convection increases sharply with increasing

lower-free-tropospheric humidity, whereas the relation

to boundary layer moisture is less discernible. The proba-

bility of smaller-scale convection, however, is strongly tied

to both lower-free-tropospheric moisture and boundary

layer moisture. Smaller-scale convection occurs at lower

values of lower-free-tropospheric humidity thanmesoscale

convection, most probably because of the strong influence

of the boundary layer on isolated cells. The influence

of the boundary layer is primarily confined to the

daytime, whereas the lower-free-tropospheric mois-

ture is strongly tied to both daytime and nocturnal

convection.

Variability in lower-tropospheric humidity accounts

for variability in the conditional instability of the envi-

ronment, as estimated from buoyancy computations,

and thus the onset of deep convection over both land

and ocean, and across the seasonal and diurnal cycles to

leading order. CWV is reaffirmed as a good proxy for

conditional instability, yet since differences exist in the

total moisture content of the lower troposphere for a

given CWV regionally, seasonally, and diurnally, dif-

ferences are thus observed in the observed onset of

precipitation with CWV. For instance, more moisture in

the daytime boundary layer and lower free troposphere

for a given CWV allow for the onset of deep convection

to occur at lower CWV in the dry-season daytime than

wet-season daytime at the GoAmazon2014/5 site. Fur-

thermore, the large range of environmental conditions

across day and night and for the wet season and dry

season at the GoAmazon2014/5 site permits inferences

to bemade about the relative success of different mixing

assumptions as predictors of deep convective conditions.

The criterion here is whether buoyancy computations

based on a given mixing scheme (as summarized by an

integrated buoyancy measure) can yield a strong rela-

tionship to the pickup in probability of precipitation.

Given that the pickup can be seen as a function of layer-

integrated water vapor, a buoyancy computation should

yield at least as distinct a relationship to be considered

successful. This comparison can be carried out sepa-

rately for mesoscale and smaller-scale convection.

To examine the relation between observed deep

convection and estimates of buoyancy, buoyancy was

computed with four different assumptions of mixing

between the plume and the environment using a simple

mixing parameterization. A parcel buoyancy estimate

with an assumption of deep-inflow mixing through a

deep lower-tropospheric layer shows that a single for-

mulation can capture the leading-order behavior con-

trolling the onset of deep convection at both a tropical

land and ocean site, across seasons and times of day, and
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for bothmesoscale and smaller-scale convection. Rather

than suggesting an exact formulation for an optimal

mixing profile, we provide evidence that even a simple

mixing parameterization that appropriately weights

boundary layer and lower-free-tropospheric air can be a

useful predictor of deep convection across a range

of scales.

Introducing deep-inflow mixing into a convective pa-

rameterization would not exclude the need for explicit

treatments of organized convection (e.g., Mapes and

Neale 2011; Khouider and Moncrieff 2015; Moncrieff

et al. 2017), but it does suggest that a deep-inflow

framework for mixing in the buoyancy calculations

could be useful even in presence of organization. While

other factors would have to determine the parameteri-

zation of organization, the indications are that a con-

sistentmixing frameworkwith deep-inflow characteristics

could work for both organized and unorganized convec-

tion. We interpret this as the organized convection being

sustained by the same basic mechanisms driving buoy-

ancy, with the inflow of environmental air into updrafts

coming from a roughly similar deep layer in both cases.

Even when the mesoscale systems are preexisting and

propagating into the region where the sounding is ob-

served, lack of conditional instability (given suitable in-

flow assumptions) yields low probability of that system

continuing to produce precipitation.

The results here suggest implementing deep-inflow

mixing in a convective parameterization might be

helpful in reducing long-standing precipitation biases in

regions like the Amazon. Though we present evidence

here and in Schiro et al. (2018) of deep-inflow mixing by

analyzing statistical properties of deep convection, we

do not suggest that the deep-inflow framework is uni-

versal; instead, we suggest that it is generally consistent

with the dependence of convective onset on lower-free-

tropospheric moisture and with estimates of mass flux.

We further underline that the statistics presented here

emphasize strongly precipitating systems, so the mea-

sures of success of deep-inflow mixing apply only to

convection contributing substantially to precipitation.

Future field campaigns and satellite missions capable of

capturing spatiotemporal variability of moisture and

precipitation at sufficiently high resolution could more

effectively test these hypotheses and greatly improve

our understanding of the relation between moisture, in-

stability, and deep convective onset across scales.
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